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A B S T R A C T   

Interfacial and/or magnetic-dielectric synergistic effects are important avenues to boost microwave absorption 
properties. In order to simultaneously utilize these effects, we elaborately designed mixed-dimensional Fe3O4- 
FeCO3/multi-walled carbon nanotubes (MWCNTs)/reduced graphene oxide (RGO) multicomponent nano
composites (MCNCs) in large scale via a facile process of hydrothermal and freeze-drying. The microstructural 
investigation revealed that two-dimensional RGO, one-dimensional MWCNTs and zero-dimensional Fe3O4-FeCO3 
nanoparticles were well bounded to generate the typical mixed-dimensional structure. By controlling the 
amounts of initial reactants, the Fe3O4-FeCO3/MWCNTs/RGO MCNCs displayed improved impedance matching 
features, polarization and conduction loss abilities, which lead to the evidently improved electromagnetic ab
sorption properties. The Fe3O4-FeCO3/MWCNTs/RGO MCNCs simultaneously exhibited excellent absorption 
ability, large absorption bandwidth, low density and thin matching thickness. Generally, this work not only 
proposed an effective route to make the best of magnetic-dielectric synergy and interfacial strategy for exploiting 
novel microwave absorption materials, but also presented a simple approach to synthesize magnetic MWCNTs/ 
RGO-based mixed-dimensional MCNCs.   

1. Introduction 

Owing to the abundant diversities in the composition and structure, 
multicomponent nanocomposites (MCNCs) exhibited much more 
extraordinary properties and promising application prospects compared 
to single-composition substances, which have attracted the intensive 
attention all the time [1–3]. Amongst, carbon-based MCNCs including 
graphene (G), carbon foams (CFs) and carbon nanotubes (CNTs) have 
always been the research hotspots owing to their unique structures, 
fascinating chemical and physical performances of carbon materials 
[4–6]. Meanwhile, the promising applications and gradually serious 
electromagnetic (EM) interference issues urgently required the re
searchers to exploit high-efficiency microwave absorbers (MAs), which 

have the characteristics of good absorption ability, broad absorption 
bandwidth, low density, thin thickness and excellent chemical stability 
[7–9]. According to the previous results and EM energy conversion 
principle [10,11], the magnetic-dielectric synergistic effect played a 
very important role in the EM wave absorption properties (EMWAPs). 
Therefore, different structures and categories of carbon-based MCNCs 
such as CoxNiy@C nanosheets [12], NiO/Ni@C [13], Ni/MXene/re
duced G oxide (RGO) [14], Ni3ZnC0.7/CNTs/nano-porous carbon [15] 
have been developed. In general, the obtained results demonstrated that 
designing carbon-based magnetic MCNCs consisting of magnetic nano
particles and carbon materials were a desirable way to develop the 
desirable candidates for high-efficiency MAs. And the 
magnetic-dielectric synergistic effect was high dependent on their EM 
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parameters and impedance matching characteristic, which were deter
mined by the microstructure and compositions [16,17]. To this end, the 
selective synthesis of carbon-based magnetic MCNCs with more tunable 
microstructural parameters should be a viable strategy to optimize their 
impedance matching characteristics and magnetic-dielectric synergistic 
effects. 

Besides, interfacial effect was demonstrated to play an important role 
in the enhancement of EMWAPs [18–20]. And designing the abundant 
interfaces to strengthen the interface polarization is a good way to 
dissipate the EM waves in the high frequency region. Consequently, 
various structures and morphologies including core/shell, hetero
structure and hollow were elaborately constructed and intensively 
investigated owing to the excellent interfacial and synergistic effects 
[21–23]. For instance, Che and his co-workers effectively used the 
unique interfacial property of hierarchical hollow structure to design the 
magnetized Fe3O4@Ti3C2Tx/CNTs microsphere. Benefiting from the 
abundant interfacial polarization, the obtained Fe3O4@Ti3C2Tx/CNTs 
exhibits the extraordinary comprehensive EMWAPs [24]. For effective 
utilizing the interfaces, Cao’s group successively proposed a facile sol
vothermal/hydrothermal method to produce two-dimensional (2D)/2D 
WS2-RGO and MoSe2@RGO heterostructures. The results demonstrated 
that the excellent interfacial effect endowed their excellent 
multiple-interface scattering and interfacial dielectric coupling, which 
resulted in their outstanding EMWAPs [25,26]. To intelligently integrate 
multiple heterostructures for enhancing dielectric polarization, Wu et al. 
designed a targeted induction and vapor-phase selenization process to 
produce zero-dimensional (0D)@2D@one-dimensional (1D) hierarchi
cal structures CoxSey/NiSe@carbon nanosheets@carbon nanofibers. 
The results verified that the mixed-dimensional heterostructures greatly 
improved the impedance matching features and loss mechanisms, which 
endowed the extremely superior EMWAPs of designed composite fabric 
with the extremely low filling load [27]. Generally, the previous results 
demonstrated that constructing rich interfaces evidently strengthened 
the interface polarization and dissipation of EM waves. Therefore, 
mixed-dimensional MCNCs should be acted as the good candidates for 
high-performance MAs because of the excellent synergistic effects, 
abundant interfaces and compositions [28]. However, it is still very 
difficult to produce mixed-dimensional MCNCs in large scale, which 
extremely hinder the applications in microwave absorption. 

Inspired by the above-mentioned viewpoints and our previous out
comes [29,30], herein, we presented a facile hydrothermal and 
freeze-drying process to synthesize mixed-dimensional Fe3O4-FeCO3/
multi-walled carbon nanotubes (MWCNTs)/RGO MCNCs in high effi
ciency. By regulating the amount of hydroxylated MWCNTs and 
graphene oxide (GO), the obtained Fe3O4-FeCO3/MWCNTs/RGO 
mixed-dimensional MCNCs displayed the improved impedance match
ing characteristics, conduction loss and polarization loss capabilities, 
which contributed to their enhanced EMWAPs. The as-prepared 
Fe3O4-FeCO3/MWCNTs/RGO mixed-dimensional MCNCs simulta
neously exhibited the good absorption ability, wide absorption band
width, thin matching thickness and low density. Consequently, this work 
provided a simple and propagable approach to synthesize magnetic 
MWCNTs/RGO-based mixed-dimensional MCNCs in high efficiency, 
which makes the best of interface and magnetic-dielectric synergy 
strategy for exploiting high-efficiency novel microwave absorbers. 

2. Experimental section 

2.1. Material 

The used initial reagents in the experiment were analytical grade. 
Among them, hydroxylated MWCNTs were bought from Jiangsu 
XFNANO Material Technology CO., LTD. (FeSO4⋅7H2O), urea [CO 
(NH2)2] and sodium hydroxide (NaOH) were obtained from Shanghai 
Aladdin Biochemical Technology CO., LTD, respectively. 

2.2. Fabrication of Fe3O4-FeCO3/MWCNTs/RGO mixed-dimensional 
MCNCs 

Firstly, according to the previous work [31], few-layer GO was 
produced by a modified Hummers method. GO solution could be ob
tained by ultrasonic dissolving the prepared GO powder (60 mg) into 
deionized water (30 mL) at room temperature for ca. 30 min. Secondly, 
hydroxylated MWCNTs (30 mg) were added into the formed GO solution 
and sonicated for another 30 min to generate the MWCNTs/GO solution. 
Thirdly, FeSO4⋅7H2O (1.39 g) was placed into the MWCNTs/GO solution 
under the mechanical stirring with an electric mixer. And the 
pre-configured NaOH solution (5 mL, 2 M) was dropped into the 
abovementioned mixture and vigorously stirred for ca. 1 h. Subse
quently, 3.2 g of CO(NH2)2 was placed into mixed solution and stirred 
for ca. 5 min. After that, the resulted solution was poured into a 
Teflon-lined stainless-steel (100 mL) for hydrothermal reaction at 
180 ◦C for 12 h. Finally, the Fe3O4-FeCO3/MWCNTs/RGO 
mixed-dimensional MCNCs named as FCRGO-1 was achieved after the 
repeatedly washed with anhydrous ethanol and deionized water, fol
lowed by magnetic centrifugation and freeze-drying. To adjust their EM 
properties, we modulated the amounts of GO and CNTs when the other 
experimental conditions kept unchangeable. Amongst, the Fe3O4-Fe
CO3/MWCNTs/RGO mixed-dimensional MCNCs denoted as FCRGO-2 
and FCRGO-3 could be produced when 80 mg of GO and 40 mg of 
MWCNTs, 100 mg of GO and 50 mg of MWCNTs were used as the 
precursors. 

2.3. Characterization and measurement 

To investigate the morphology, phase and chemical valence, the 
obtained Fe3O4-FeCO3/MWCNTs/RGO mixed-dimensional MCNCs were 
characterized by X-ray powder diffractometer (XRD), X-ray Photoelec
tron spectroscopy (XPS), scanning electron microscope (SEM) and 
transmission electron microscope (TEM), respectively. In order to study 
the EM parameters and MAPs, 15 wt% of Fe3O4-FeCO3/MWCNTs/RGO 
MCNCs and 85 wt% of paraffin were mixed and pressed into a toroidal 
shape with the external diameter of 7.00 mm and internal diameter of 
3.00 mm. And the obtained cylindrical samples were measured over a 
vector network analyzer (R&S®ZNB-40). Based on and transmission line 
theory and EM parameters (ε = ε′ − jε″ and μ = μ′ − jμ″), the reflection 
loss (RL) values of samples were achieved by the following equations 
[32]: 

Zin = Z0

̅̅̅
μ
ε

√

tanh
(

j
2πfd ̅̅̅̅̅με√

c

)

(1)  

RL = 20log
⃒
⃒
⃒
⃒
Zin − Z0

Zin + Z0

⃒
⃒
⃒
⃒ (2)  

Where ε, μ, d, c, f, Z0 and Zin represent complex permittivity, complex 
permeability, thickness of sample, velocity of light, frequency of EM 
wave, impedance of air and input impedance of MAs, respectively. 

3. Results and discussion 

3.1. Microstructures and phases of Fe3O4-FeCO3/MWCNTs/RGO mixed- 
dimensional MCNCs 

Firstly, the microstructures of FCRGO samples were investigated by 
SEM. Fig. 1 gives the SEM images of FCRGO-1, FCRGO-2 and FCRGO-3 
samples. As shown in Fig. 1a, one can see that the obtained FCRGO-1 
sample exhibits a representative three-dimensional (3D) hierarchical 
structure, which is composed of 0D Fe3O4-FeCO3 nanoparticles, 1D 
MWCNTs and 2D RGO nanosheets. The high-resolution SEM investiga
tion (as presented in Fig. 1b and c) reveals that a large number of Fe3O4- 
FeCO3 nanoparticles and MWCNTs are well attached to the surface of 
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RGO nanosheets. Likewise, similar to FCRGO-1, the SEM observations of 
FCRGO-2 (as displayed in Fig. 1d-f) and FCRGO-3 (as presented in Fig. 1 
g-i) indicate that the obtained samples also consist of 1D MWCNTs, 0D 
Fe3O4-FeCO3 nanoparticles and 2D sheet-like RGO, which collaborates 
the typical 3D hierarchical structures. By comparison, it can be found 
that the MWCNTs and RGO with progressively enhanced contents in the 
obtained FCRGO samples can be produced with increasing the amounts 
of MWCNTs and GO, which is very conducive to improve the interfaces 
and conductive performance. Similar to RGO–CNT-Co3S4 and CeO2/ 
GO/CNTs MCNCs reported elsewhere [33,34], the obtained results 
suggest that the obtained FCRGO samples consisting of 2D RGO, 1D 
MWCNTs and large quantities of 0D Fe3O4-FeCO3 nanoparticles are 
synthesized in high efficiency and large scale via a facile hydrothermal 
and freeze-drying process. 

To further confirm the microstructures, Fig. 2 gives the TEM images 
of as-prepared FCRGO samples. As shown in Fig. 2a, one can see that the 
as-prepared FCRGO-1 is a typical mixed-dimensional MCNCs, which 
includes 0D Fe3O4-FeCO3 nanoparticles, 1D MWCNTs and 2D RGO 
nanosheets. The closer TEM investigation (as presented in Fig. 2b and c) 
reveal that massive Fe3O4-FeCO3 nanoparticles (marked by the red 
arrow) are anchored on the surface of MWCNTs (labeled by the yellow 
arrow) and RGO (signed by the blue arrow), which effectively form a 3D 
conductive network. Same to FCRGO-1, the TEM observation reveals 
indicate that 2D RGO, 1D MWCNTs and 0D Fe3O4-FeCO3 nanoparticles 
can be clearly observed in the obtained FCRGO-2 (shown in Fig. 2d-f) 
and FCRGO-3 (shown in Fig. 2 g-i). The results further confirm that the 
MWCNTs are well bound with the sheet-like RGO and Fe3O4-FeCO3 
nanoparticles are well attached on the outer surface of MWCNTs and 
RGO to form the 3D hierarchical mixed-dimensional networks. 
Furthermore, the comparison results further verify that the progres
sively enhanced content of MWCNTs and RGO can be observed in the as- 

prepared FCRGO samples with enhancing the qualities of MWCNTs and 
GO, which is accord with the experimental results and SEM in
vestigations. In general, the SEM and TEM investigations demonstrate 
that the paper-like GO, MWCNTs and Fe3O4-FeCO3 nanoparticles are 
mutually correlated to each other for the establishment of 3D hierar
chical mixed-dimensional MCNCs. 

Fig. 3 provides the XRD patterns, XPS spectra of the obtained FCRGO 
samples to detect their chemical compositions and phases. As shown in 
Fig. 3a, it can be found that the obtained FCRGO-1, FCRGO-2 and 
FCRGO-3 samples presents the similar XRD diffraction peaks, which 
indicates their similar phases. And the diffraction peaks at 62.55◦, 
56.96◦, 43.07◦, 35.44◦, 30.09◦ and 18.29◦ can be assigned to (440), 
(511), (400), (311), (220) and (111) crystal faces of spinel Fe3O4 
(JCPDS:85–1436). And there are four obvious characteristic peaks of 
24.75◦, 31.99◦, 38.34◦ and 52.83◦ on the XRD pattern, which corre
spond to the (012), (104), (110) and (116) crystal planes of FeCO3 
(JCPDS: 29–0696), respectively. Similar to GO/CNT-Fe3O4 MCNCs [35], 
there are no characteristic XRD diffraction peaks assigned to RGO and 
MWCNTs, which is related to the inhibition of RGO restacking and the 
dispersion of Fe3O4-FeCO3 with large quantities on the surface of RGO 
sheet and MWCNTs [36]. Furthermore, Raman spectroscopy was con
ducted to analyze the graphitization of carbon. As presented in Figure S1 
(Supporting Information), the FCRGO samples display two character
istic peaks of carbon located at ca. 1340 cm− 1 and 1570 cm− 1, which are 
referred to D-band and G-band, respectively. The Raman spectra confirm 
the existence of RGO and MWCNTs [25,37]. To verify the chemical 
valence, the as-prepared sample was characterized by the XPS. Taking 
FCRGO-2 as example, the XPS survey spectrum (as shown in Fig. 3b) has 
four distinct peaks belonged to the Fe 2p1/2, Fe 2p3/2, O 1 s and C 1 s, 
which originate from the elements of Fe, O and C. As marked in Fig. 3c, 
the high-resolution XPS spectrum of C 1 s can be deconvoluted into three 

Fig. 1. SEM images of (a-c) FCRGO-1, (d-f) FCRGO-2 and (g-i) FCRGO-3, respectively.  
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peaks at ca. 288.37 eV, 285.25 eV and 284.38 eV, which correspond to 
the different functional groups of C atoms including O–C = O, C–O/C 
= O and C–C/C = C, respectively [38,39]. Equally, as presented in 
Fig. 3d, the high resolution XPS spectrum of Fe 2p can be divided into 
four peaks including Fe 2p3/2, Fe 2p1/2 and their satellite peaks, which 
reveal the oxidation states of Fe2+ and Fe3+ in the obtained sample [40, 
41]. Furthermore, the comparison XPS results (as shown in Figure S2) 
indicate that the obtained FCRGO-1 and FCRGO-3 exhibit the analogical 
XPS spectra, which implies their similar surface chemical compositions 
and valences. In general, the obtained SEM, TEM, XRD and XPS results 
reveal that mixed-dimensional Fe3O4-FeCO3/MWCNTs/RGO MCNCs 
were produced in high efficiency by means of our proposed hydrother
mal and freeze-drying process. 

3.2. EM performances and EMWAPs of Fe3O4-FeCO3/MWCNTs/RGO 
MCNCs 

To evaluate the EMWAPs of Fe3O4-FeCO3/MWCNTs/RGO MCNCs, 
Fig. 4 gives the complex permittivity, dielectric loss tangent (tanδε =

ε″ /ε′) and RL values. In the light of Debye theory, the values of ε′ and ε″ 

are expressed by the following formulas [42]: 

ε′ = ε∞ +
εs − ε∞

1 + (2πf τ)2 (3)  

ε″ = ε″p + ε″c =
εs − ε∞

1 + (2πf τ)2 2πf τ + σac

2πf ε0
(4)  

Where τ, ε″p, ε″c, ε∞, σac and εs are relaxation time, polarization loss, 

conductivity loss, relative dielectric permittivity at the infinite fre
quency limit, alternative conductivity and static permittivity, respec
tively. As shown in Fig. 4a, the FCRGO-1, FCRGO-2 and FCRGO-3 
samples exhibit the decreased ε′ values in the tested frequency region, 
which can be attributed to the increased value of frequency according to 
the Debye theory [43]. And their ε′ values are in the range of 5.38–4.85, 
5.90–5.28 and 10.01–6.38, respectively. One can find that their ε′ values 
are as follows: FCRGO-1<FCRGO-2<FCRGO-3, which can be attributed 
to the enhanced content of high dielectric RGO and MWCNTs. 
Furthermore, one can find that the ε″ value (as presented in Fig. 4b) of 
FCRGO-1, FCRGO-2 and FCRGO-3 samples shows the enhancement 
trend when the frequency increases from 2.00 to 18.00 GHz. On basis of 
Eq. (3), the measured ε″ curves suggest the key role of polarization loss in 
the designed mixed-dimensional Fe3O4-FeCO3/MWCNTs/RGO MCNCs 
[44]. Equally, the comparison results suggest the enhanced content of 
MWCNTs and RGO effectively boost their ε″ values, which favor the 
improvement of dielectric loss capability [45]. And the tunable EM 
parameters are very propitious to boost the impedance matching char
acteristic and EMWAPs [46]. As provided in Fig. 4c, we can find that the 
as-prepared Fe3O4-FeCO3/MWCNTs/RGO mixed-dimensional MCNCs 
exhibit the progressively increased tanδε values with the enhanced 
contents of MWCNTs and RGO, which indicates their boosted dielectric 
loss abilities [47]. On basis of Eqs. (1), (2) and EM parameters 
(Figures 4a, 4b and S3), their RL values can be obtained. It can be 
observed that the minimum RL (RLmin) values for FCRGO-1, FCRGO-2 
and FCRGO-3 samples (as given in Fig. 4d-f) are − 55.89 dB at 12.36 
GHz, − 56.63 dB at 15.00 GHz and − 46.11 dB at 11.00 GHz, respec
tively. And the matching thicknesses (dm) values corresponding to RLmin 

Fig. 2. Different resolutions of TEM images for (a-c) FCRGO-1, (d-f) FCRGO-2 and (g-i) FCRGO-3, respectively.  
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values are 8.22 mm, 1.87 mm and 2.46 mm. Additionally, as presented 
in Fig. 4 g-i, the effective absorption bandwidth (EAB) values for 
FCRGO-1, FCRGO-2 and FCRGO-3 samples are 3.04 GHz (14.96–18.00 
GHz) at 6.31 mm, 3.00 GHz (15.00–18.00 GHz) at 2.19 mm, and 6.20 
GHz (11.80–18.00 GHz) at 1.99 mm, respectively. In general, it can be 
seen that the enhanced contents of MWCNTs and RGO effectively boost 
the comprehensive EMWAPs of designed mixed-dimensional Fe3O4-Fe
CO3/MWCNTs/RGO samples. In particular, the obtained FCRGO-3 
sample simultaneously exhibits the excellent performances including 
good absorption capability, large absorption bandwidth, low density, 
small matching thicknesses (~2 mm), etc. Additionally, as collected in 
Table 1, it can be seen that the obtained FCRGO samples can also be 
acted as the promising high efficiency MAs [48,49]. 

3.3. Analyses the difference in properties and main avenues of EM wave 
attenuation 

Based on the obtained results, it is found that the enhanced contents 
of MWCNTs and RGO contribute to the enhanced comprehensive 
EMWAPs of designed mixed-dimensional Fe3O4-FeCO3/MWCNTs/RGO 
samples. To find out the reasons, the EM wave attenuation and imped
ance matching characteristics including conductivity loss (ε″c), polari
zation loss (ε″p), attenuation constant (α) and impedance matching ratio 
(Z) were investigated in details, which were calculated based on the 
Debye theory [50]: 

α =

̅̅̅
2

√
πf

c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(μ″ε″ − μ′ε′) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(μ″ε″ − μ′ε′)2
+ (ε′μ″ + ε″μ′)2

√√

(5)  

Z= |Zin /Z0| (6) 

Based on the Eqs. (3–6) and EM parameters, Fig. 5 provides the 
values of ε″c, ε″p, α and Z values of the obtained mixed-dimensional 
Fe3O4-FeCO3/MWCNTs/RGO MCNCs. As shown in Fig. 5a and b, the 
obtained mixed-dimensional Fe3O4-FeCO3/MWCNTs/RGO samples 

present the decreased enhanced ε″c values and enhanced ε″p values be
tween 2.00 and 18.00 GHz, which are identical with the obtained ε″ 

values and Debye theory. By comparison, one can find that the ε″c and ε″p 

values are as follows: FCRGO-3>FCRGO-2>FCRGO-1, which means the 
gradually strengthened conductivity and polarization loss and capabil
ities [51]. And the increased ε″c values root in the increased contents of 
RGO and MWCNTs, which greatly improves their conductivities [52]. 
And the increased ε″p values are ascribed to the formation of much more 
interfaces amongst the generated 0D Fe4O3 nanoparticles, 1D MWCNTs 
and 2D sheet-like RGO in the designed mixed-dimensional Fe3O4-Fe
CO3/MWCNTs/RGO samples, which can be verified by the aforemen
tioned TEM and SEM investigations. Moreover, the designed 
mixed-dimensional Fe3O4-FeCO3/MWCNTs/RGO MCNCs present 
much lower ε″c values than the obtained ε″p ones, which further confirms 
the main contribution of polarization loss [41]. As given in Fig. 5c, the 
obtained results suggest that the obtained Fe3O4-FeCO3/MWCNTs/RGO 
samples present the boosted α values with increasing the amounts of GO 
and MWCNTs, which verify their boosted EM wave attenuation abilities 
[41,53]. Likewise, as the presented Fig. 5d-f, the obtained Z values 
reveal that the obtained FCRGO-3 exhibits the optimal impedance 
matching characteristic, and the obtained FCRGO-1 presents the worst 
one. Generally, the above results indicate that the generated abundant 
interface, increased contents of RGO and MWCNTs contribute to the 
superior conductivity loss, polarization loss, EM wave attenuation ca
pabilities and impedance matching characteristics, which result in the 
strengthened EMWAPs of mixed-dimensional Fe3O4-Fe
CO3/MWCNTs/RGO samples. And the outstanding EMWAPs of 
FCRGO-3 sample can be explained by its extraordinary impedance 
matching characteristic and interfacial effect. 

To easily understand the excellent EMWAPs, Fig. 6 provides the main 
EM wave loss avenues of the designed mixed-dimensional Fe3O4-FeCO3/ 
MWCNTs/RGO MCNCs based on the achieved results and previously 
reported models [54,55]. And the main path of EM wave dissipation 
mainly roots in the following factors: (i) the designed 

Fig. 3. (a) XRD patterns of FCRGO-1, FCRGO-2 and FCRGO-3. (b-d) XPS spectra of FCRGO-2.  
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mixed-dimensional Fe3O4-FeCO3/MWCNTs/RGO MCNCs consisting of 
2D RGO, 1D MWCNTs and a large number of Fe4O3 nanoparticles results 
in the formation of plentiful interfaces, which greatly aggrandize the 
interfacial polarization to dissipate the penetrated EM waves [56]. (ii) 
the obtained Fe3O4-FeCO3/MWCNTs/RGO MCNCs consisting of 
Fe3O4-FeCO3, MWCNTs and RGO can simultaneously provide the mag
netic loss, dielectric loss and excellent synergistic effect, which con
tributes to the enhancement of EMWAPs [57]. (iii) the elaborately 
designed Fe3O4-FeCO3/MWCNTs/RGO mixed-dimensional MCNCs 
consisting of 2D RGO and 1D MWCNTs form a typical conductive 
network, which effectively improves the conductive loss capability [58, 
59]. (iv) large amounts of residual polar groups and/or defects existed in 

the RGO and MWCNTs contribute to the enhanced dipole polarizations, 
which also helps to attenuate the EMW [45,60]. 

4. Conclusion 

In short, Fe3O4-FeCO3/MWCNTs/RGO mixed-dimensional MCNCs 
were well-designed and successfully produced in large scale by the 
means of a simple hydrothermal and freeze-drying process. And the SEM 
and TEM investigations reveal that the obtained Fe3O4-FeCO3/ 
MWCNTs/RGO MCNCs were composed of 2D RGO, 1D MWCNTs and 0D 
Fe3O4-FeCO3 nanoparticles, which were well combined to form a typical 
mixed-dimensional hierarchical network. Owing to the unique mixed- 

Fig. 4. (a) Real parts of complex permittivity, (b) imaginary parts of complex permittivity, (c) loss tangent, (d-f) 3D RL color maps, and (g-i) 2D RL curves of FCRGO- 
1, FCRGO-2 and FCRGO-3. 

Table 1 
Characteristic values about EMWAPs among the recently representative MCNCs.  

Substances EAB (GHz) dm (mm) RLmin (dB) dm (mm) References 

CoFe2O4@ MCHS 2.40 5.00 − 29.70 5.00 [7] 
MoS2@PEDOT/GO 6.48 2.20 − 48.65 4.50 [9] 
ZnFe2O4@MoS2 5.20 1.88 − 31.29 1.61 [10] 
MoS2@C 3.70 2.63 − 62.30 2.88 [17] 
Co/NC@MnO2 6.20 2.10 − 54.70 2.10 [20] 
MoS2/CoS2/VN 5.76 2.02 − 50.48 2.02 [21] 
Fe3O4@Ti3C2Tx/CNTs 5.80 2.00 − 40.10 2.00 [24] 
HC@MoS2 6.00 2.06 − 42.63 1.92 [30] 
CF/CNTs@Fe3C@Fe3O4 5.00 1.81 − 44.48 1.68 [31] 
CoNi@void@C 5.20 1.95 − 50.97 2.05 [33] 
CP/Co 5.00 1.68 − 52.71 1.65 [46] 
PBHAC/MoS2 6.08 2.00 − 57.80 1.93 [48] 
CoNi@Air@C/SiO2@PPy 4.80 2.06 − 52.75 2.72 [49] 
FCRGO-3 6.20 1.99 − 46.11 2.46 This work  
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dimensional structure, abundant interfaces generated among RGO, 
MWCNTs and Fe3O4-FeCO3 nanoparticles, which resulted in the excel
lent polarization loss capabilities. Furthermore, RGO and MWCNTs also 
contributed to their good conduction loss capabilities. And their 
impedance matching characteristics were effectively improved by 
regulating the amounts of GO and MWCNTs. Notably, the obtained 
FCRGO-3 sample achieved a RLmin value of − 46.1 0 dB with the dm of 
2.46 mm and EAB value of 6.20 GHz with the dm of 1.99 mm, which 
were ascribed to its excellent interfacial effect and impedance matching 
characteristic. Consequently, it was believed that this finding proposed 
an effective approach to fabricate high efficiency of mixed-dimensional 
magnetic MWCNTs/RGO-based MCNCs, which made best of impedance 
matching and interfacial strategy to optimize the EMWAPs. 
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